Titan WIG Frank

Problem Definition

Objective

- Design a WIG Craft for planetary surface exploration
- Estimate performance on the atmosphere in Titan

Constraints

Performance requirements:

- Range to exceed 10 km
- Dry mass = 450 Kg (with Battery)

Power Assumptions

- Hotel Power = 100W
- Battery density = 100 W.hr/kg

Titan - Features

Saturn's Largest moon

Acceleration of Gravity

• 1.4 m/s²

Distance from Sun

- 1,427,000,000km
- Sunlight 100X weaker than on Earth

Speed of Sound

• 194 m/s

Radius

• 2,575 km

Titan's dense, hydrocarbon rich atmosphere remains a focal point of scientific research. Credit: NASA

Titan - Surface

- 67% flat plains
- 17% sandy dunes (mostly around the equator)
- 14% 'hummocky' hilly or mountainous
- 1.5% is 'labyrinth' terrain, with valleys carved by rain and erosion

TITAN - Atmosphere

Composition

Nitrogen [94%] & Methane [6%]

Surface Pressure

- 146 kPa [3050 lb/ft²]
 - o 50% higher than earth

Surface Temperature

- 94° K
- -180° C
- -290 °F

Density

- 5.4 kg/m³
 - o X4.4 earth density

Layers of Titan atmosphere, image from the Cassini spacecraft

Design Features and Impact

Concept Picture

Isometric View

Side View

Top View

Fuselage

Wings

- Span: 10m
- Aspect Ratio: 6.6
- S:15m^2
- Sweep:20°
- Length: 4m
- Diameter: 1.5m

Design Philosophy and Selection Criterion

Why WIG?

- Reduced wing tip vortices
 - Decreased induced drag
 - Higher speeds
 - Lower power requirement

- Increased pressure beneath wings
 - Increased lift
 - Lower power requirement
 - Larger payload capabilities

Inspirations

X-114 Lippisch WIG

Maxwell X-57

Titan Dragonfly NASA Image

Widgetworks

DARPA Liberty Lifter Concept(General Atomics Image)

Unique Features of Concept

Folding

- The wings fold inwards so that the aircraft can be transported to Titan. Each wing has two folds
- Fit inside aeroshell that is 4.5 meter diameter
- Vehicle mostly wing, small fuselage

Wheels

- Aluminum Alloy 7075 high fatigue resistance and maintains mechanical properties at low temperatures.
- Inspiration taken from NASA's VIPER

Electric Propulsion

No need for fuel which runs out, increases lifespan

Mars 2020 Aeroshell, NASA

NASA VIPER wheel design

Impact

Environment

- Tech/instruments can also analyze Earth
 - More nuanced understanding of our own environment
- Utilizing electric propulsion therefore developing better electric technology that could be used on Earth

Economy

- Provide many jobs for years
 - Manufacturing/fabrication
 - Development/design

Impact¹

Society

- Heightened interest in space exploration
- Tech breakthroughs to benefit all
- Spinoff technologies NASA reported +2000 since 1976

The World

- Further our knowledge of the universe as a whole
- Help to develop technology that benefits us on Earth
- Potential for life helps understand life on Earth

Technical Risk

Structures

Insulation

- Multilayer Insulation (MLI) System
 - Sandwich structure of reflective, spacing and insulating, as well as adhesive materials
 - Prevents radiation in/out of spacecraft to maintain operating temperatures

Advantages

- Ensure functionality/longevity of onboard systems/instrumentation
- Lightweight
- Functionally efficient (nearly 100% reflection of radiated heat)
- Energy efficient (less need for venting/heating)
- Able to fit complex geometries (built for purpose in every case)
- Enhanced structural integrity (reduced thermal cycling)

Structures

Materials

- Aluminum Alloy 2024-T3 Fuselage, Tail, Wings
 - Has a high strength-to-weight ratio
 - High fatigue resistance
 - Strong in cold temperatures

Mass Estimates

- 140 kg Battery
- 45 kg MMRTG Generator
- 81 kg Propellers
- 25kg SubSystems
- 13.5kg Wheels (4.5kgX3)
- 145.5kg Structure

Total - **450kg**

Propulsion

Power Generator: MMRTG

Multi-Mission Radioisotope ThermoElectric Generator

- ~75W (after degradation, at BOL 110W)
- Approx 4.5W loss a year
- Generates heat for internal system

Battery:

- 100 W.h/kg
- Sized to be 140 Kg
- Complete battery charge in 192 hours (1 Titan Night)
- $75W \times 192h = 14.4kWh$

MMRTG Generator NASA Image

Propulsion

Propellor type 1 (small) x2

- MH 114
- D = .58m
- 5 blades
- Fixed Pitch

Propellor type 2 (large) x1

- MH 114
- D = 1.5m
- 3 blades
- Fixed Pitch

Motor type 1 (electric cruise motor) x2

- Power requirement: 10.5kW
- Efficiency Factor: .98
- Mass = 7 kg

Motor type 2 (electric high lift motor) x1

- Power requirement: 60kW
- Efficiency Factor: .98
- Mass = 53 kg

Maxwell X-57

^{*}based on propulsion from X-57 Maxwell

Stability and control

Static Stability

Batteries located at CG location

Dynamic Stability

- T-tail design reduces turbulence which is important for WIG aircraft
 - Provides horizontal and vertical stability
- PID controller controls ailerons and elevator/rudder
- High wing placement increases roll stability

Craft top view with CG Location

SubSystems

- Mass Spectrometer
 - Determine chemical composition
- Gamma-Ray and Neutron Spectrometer
 - Determine composition of area below lander
- Geophysics and Meteorology Package
 - Temperature
 - Wind speed
 - Pressure
 - Tectonic Activity
- Camera Suite
 - Provide images of Titan surface
 - Navigate using cameras and data from previous Titan exploration

^{*}Based on dragonfly

Aerodynamics

Airfoil choice 6412

- Cambered airfoils capable of generating lift even at 0° angle of attack
- Optimizes lift/drag ratio
- High camber contributes to larger pressure drop

^{*}informed by CFD Analysis(see Journal of Physics reference)

Aerodynamics – Parasitic drag

 $C_{DO} = .003$

Aerodynamics – Drag Polar

$$C_{Di} = K C_{L}^{2}$$

.072 = K 0.96²

K = .0781

*No WIG effects

$$C_{Diwig} = .072*.7 = .0504$$

 $.0504 = K 0.96^{2}$

K = .05468

*WIG effects included

K - lift-induced drag coefficient factor

 \mathbf{C}_{Di} - induced drag coefficient

Flight Mechanics

• Range: 41 km

Altitude : ~2m (20% of span)

Cruise Speed: 55 m/s

• Mach: .28

• Flight Duration: 12 minutes

• Large Aspect ratio: 6.6

- Maximize height off the ground to use WIG effect
- Increase oswald efficiency factor
- Drawback: less maneuverable but Titan is very flat so not a big factor

References

https://science.nasa.gov/saturn/moons/titan/

https://iopscience.iop.org/article/10.1088/1742-6596/1355/1/012006/pdf#:~:text=NACA%206412%20shows%20the%20best,can%20generate%20higher%20pressure%20drop. (Airfoil CFD Analysis)

https://questthermal.com/uncategorized/what-is-a-spacecraft-multilayer-insulation/#:~:text=Spacecraft%20multilayer%20insulation%20comprises%20several,ability%20to%20withstand%20severe%20conditions.

https://dragonfly.jhuapl.edu/News-and-Resources/docs/34_03-Lorenz.pdf (Dragonfly Info)

https://www.nasa.gov/solar-system/artemis-moon-rovers-wheels-are-ready-to-roll/ (wheel design)

https://ntrs.nasa.gov/api/citations/20210016834/downloads/LSAWT_HLP_Test_Aviation2021_Final062_8.pdf (X-57 Maxwell)

https://www.nasa.gov/wp-content/uploads/2015/08/4_mars_2020_mmrtg.pdf?emrc=35c41b (MMRTG)

https://www.xometry.com/resources/materials/2024-aluminum-alloy/https://www.nasa.gov/news-release/nasas-economic-benefit-reaches-all-50-states/#:~:text=The%20agency%20has%20recorded%20more.a%20summary%20of%20the%20report:

QUESTIONS?